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Abstract

Heuristic studies of a strut on an elastic foundation and a strut with a sinusoidally varying load are extended to

include initial geometric imperfections. Examination of various shapes of imperfection leads to the conclusion that
for the majority of cases the most severe form is localized to a section of the structure rather than periodically
distributed along the length. This leads to an examination of the imperfection sensitivity of an axially-loaded

sandwich panel, the geometry of which is determined from a simple optimization routine bringing together two
distinct modes of buckling. It is found that such a structure exhibits highly unstable snap-back behaviour in the
perfect case and that combined with localized imperfections, it would never attain its linear critical buckling
load. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recent work on the localization of buckle patterns has led to greater understanding of structural

systems that undergo subcritical instability (Champneys et al., 1997). Although these studies have mainly

been concerned with the perfect systems, insight of the qualitative behaviour of imperfect systems can be

readily obtained merely by examining their initial stability characteristics. An axially-loaded rectangular

long plate supported on all edges exhibits supercritical instability, periodic buckle patterns, and is stable

in the post-buckling range, implying that an imperfect plate is not very sensitive to initial imperfections

in the elastic range; any imperfection sensitivity of the plate is usually associated with yielding. The

classic counter-example is a system that exhibits localized buckling, an axially-loaded cylindrical shell for

instance, which is severely unstable in the elastic post-buckling range (Lord et al., 1997) and so can be

assumed to be highly imperfection sensitive. However, in systems where localization occurs the detailed
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treatment of imperfections, whose shape sympathize with the ®nal buckle pattern of the perfect system,
has been somewhat constrained by a lack of suitable tools. Now, with the advent of powerful analytical
and numerical tools such as symbolic computation and parameter continuation packages, such
investigations are possible.

This paper extends this work on localization by introducing imperfections to three models, each of
which exhibits localized buckling at some stage. Unlike classical work on imperfection sensitivity where
there tends to be a unique worst case wavelength for the imperfection, the localization phenomenon
forces the worst case imperfection to change shape as load changes. Earlier work used the strut on a
nonlinear foundation and applied various shapes of imperfection to the system (Amazigo et al., 1970).
The e�ects of the various imperfections were compared against each other by using the maximum
amplitude of imperfection as the relative measure; this prejudices the results as periodic imperfections
locally have identical maximum de¯ection but globally have many extrema at the same amplitude,
whereas the localized imperfections have one extremum at that amplitude, implying a smaller total
de¯ection. Naturally, the worst case was found to be the periodic type imperfection. Further work on
similar lines was applied to the von KaÂ rmaÂ n-Donnell equations for the axially-loaded cylindrical shell
(Amazigo and Fraser, 1971) and was later extended by Lucena Neto (1992).

In the present study, two types of imperfection (purely periodic and modulating localized) are
examined on three separate systems. These are put into the following increasingly complex systems. The
®rst is a linear strut on a softening nonlinear foundation with a constant compressive load (Hunt et al.,
1989). The second is a linear strut on a softening nonlinear foundation with a sinusoidally varying
loadÐthe body force model (Hunt and Wadee, 1998); this qualitatively behaves as a system where there
is an interaction with overall and local buckling modes (Thompson and Hunt, 1973; 1984). The third
system results from a full interactive buckling formulation of a structural sandwich panel (Hunt and
Wadee, 1998; Wadee and Hunt, 1998a), in which overall and local buckling interact to induce localized
buckling.

The examination of imperfection sensitivity of the sandwich panel combines the study of the e�ects of
structural optimization, as the panel is optimized by virtue of coinciding critical modes of buckling with
the use of composite construction. Structural optimization has been popular over the years and
especially so in the aeronautics industry (Prager, 1968; Steven et al., 1998) where composite materials
and construction are used extensively (MroÂ z, 1970; Kodiyalam et al., 1996). Previous work on the e�ects
of optimization in nonlinear structures (Thompson and Hunt, 1973; Budiansky, 1976) have highlighted
the need for care in such designs so that complex instability is not promoted; the present work
underlines this caution for designers of compression sandwich panels.

2. Development of the imperfect heuristic systems

This section formulates the di�erential equations for two heuristic models of struts on nonlinear
elastic Winkler-type foundations, Fig. 1(a). The ®rst is a strut on a softening quadratic foundation with
a constant axial load, and the second model is a strut on a softening quadratic foundation but with a
sinusoidally varying axial load. Both are modelled with a generalized imperfection, w0, which is
formulated from an energy principle. The nonlinear elastic foundation is chosen as softening to promote
localization, and quadratic to investigate initial post-buckling. The form of the imperfection closely
matches that of least stable localized buckling for the strut on a softening foundationÐderived from a
®rst order approximation of a multiple scale perturbation analysis (Wadee et al., 1997)

w0�x� � A0 sech
�
a�xÿ c�� cos

�
bp�xÿ c�=L�, �1�
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where x 2 �0, L� and w0 is symmetric about x � c. This enables the study of periodic and localized
imperfections; w0 is periodic when a � 0 with a wave number b, but has a modulated amplitude for
a 6� 0 (Fig. 1(b)).

2.1. Strut with constant load

The imperfection is introduced by supposing an initially deformed shape w0�x� is stress-relieved, such
that the elemental bending moment, M, and thus stored strain energy of bending drop to zero as
represented in Fig. 2 (Thompson and Hunt, 1984):

Fig. 2. Stress-relieved state of the strut, after Thompson and Hunt (1984).

Fig. 1. The imperfect strut on an elastic foundation.
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dUb � 1

2
M dj � 1

2
EI�XÿX0�2 dx �2�

where X is the curvature of the strut due to w. This also assumes that the strain energy in the
foundation is non-zero in the initial state. Assuming a small de¯ection curvature relationship, i.e.
X � w 00, the strain energy of bending becomes:

Ub � 1

2
EI

�L
0

ÿ
w 00 ÿ w 000

�2
dx, �3�

where primes represent di�erentiation with respect to the spatial variable x. Including Ub into the total
potential energy, V, along with the contributions of foundation energy and work done by the load P,
the expression of V becomes:

V �
�L
0

�
1

2
EI
ÿ
w 00 ÿ w 000

�2�1
2
kw2 ÿ 1

3
k1w

3 ÿ 1

2
Pw 02

�
dx, �4�

where k and k1 respectively represent the linear and quadratic components of the constitutive law of the
foundation F:

F � kwÿ k1w
2 �5�

Applying the calculus of variations to this functional, the following nonhomogeneous di�erential
equation is obtained:

EIw 0000 � Pw 00 � kwÿ k1w
2 � EIw 00000 �6�

This system has a propensity to buckle anywhere along the length. Thus the location of maximum
imperfection should not change the limit load of the structure (except perhaps near a boundary).

2.2. Strut with sinusoidally varying load

This has the same imperfection formulation as above except the load term has an additional
sinusoidal component as if the strut is already buckling in an overall (Euler-type) mode.

Ptotal � P�Q sin
px
L

�7�

Putting Ptotal into V (eqn (4)) instead of P and applying the calculus of variations, we obtain the
following di�erential equation (Hunt and Wadee, 1998):

EIw 0000 � Pw 00 �Q

�
sin

px
L
w 00 � p

L
cos

px
L
w 0
�
� kwÿ k1w

2 � EIw 00000 : �8�

This system would tend to buckle at midspanÐthe sinusoidal body force represented by Q places the
maximum stress there.

3. Axially-compressed sandwich panel

Structural sandwich panels, Fig. 3, are used in applications where weight e�ciency has to be
combined with high strength. However, owing to the fact that they are e�cient carriers of load in
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compression, they tend to exhibit nonlinear mode interaction e�ects (Thompson and Hunt, 1973)
involving an overall mode of buckling combined with a local mode of buckling on one face; localized
buckling on one face is the resultÐleading to highly unstable post-buckling behaviour (Hunt and
Wadee, 1998).

In this section, the linear critical load formulation for each of the distinct buckling modes is
summarized, followed by an abridged presentation of the formulation of the model to describe the
sandwich panel's post-buckling behaviour. This lays the foundation for the numerical case study where a
simple optimization routine is employed to obtain an e�cient panel. This panel is examined in detail for
its perfect and imperfect post-buckling behaviour.

3.1. Critical buckling loads

The critical loads for overall and local buckling for the sandwich panel are derived from linear
periodic Rayleigh±Ritz analyses (Allen, 1969; Hunt et al., 1988). For overall buckling, the core cannot
be modelled by a Winkler-type foundation as this would implicitly assume the Euler±Bernoulli
approximation that plane sections remain plane, denying shearing strains; this makes the face plates
independent, and stops the possibility of local buckling. Thus, the e�ect of shearing in the core is
accounted for by decomposing the overall half sine wave mode into separate sway and tilt components
(Fig. 4). For the local mode, a straight combination of snake (anti-symmetric with shearing) and
hourglass (symmetric and no associated shear) modes with an associated wave number i is employed
such that one face remains unbuckled whilst the other face buckles periodically. Sway and tilt overall

Fig. 4. Decomposed modes for critical buckling: (a) sway and tilt components of overall mode; (b) snake and hourglass modes of

local buckling.

Fig. 3. Typical sandwich panel, cross-section and material properties.
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mode components W and y with respective amplitudes qs and qt:

W�x� � qsL sin
px
L
, y�x� � qtp cos

px
L
: �9�

Snake (N) and hourglass (H) modes for local buckling:

WN�x� � a1L sin
ipx
L

, yN�x� � a2p cos
ipx
L

, WH�x� � a3L sin
ipx
L
: �10�

Note that when one face remains straight, and the other face buckles periodically, a1 � a3.

3.1.1. Strain energy
Standard expressions su�ce in the development of the di�erent components of strain energy. Bending

energy depends on the curvature (X) of the panel faces as buckling takes place, membrane energy
accounts for the direct stresses on the face plates, and core energy accounts for the two-dimensional
stress state in the core consisting of both direct and shearing stresses. Table 1 contains all the necessary
expressions for performing the linear analysis to obtain the overall and local critical buckling loads,
where D is end-shortening arising from pure compression.

Total strain energy of bending, where EI is the ¯exural rigidity of one face plate:

Ub �
�L
0

EIX2 dx: �11�

Membrane energy of both face plates:

Um �
�L
0

1

2
Etc

�
ex�x, b=2�2�ex�x,ÿ b=2�2

�
dx: �12�

Strain energy stored in an orthotropic core under plane stress (Wadee and Hunt, 1998a):

Uc �
�L
0

�b=2
ÿb=2

"
c

2
ÿ
1ÿ vxvy

��Exe2x � Eye2y � 2vxEyexey
�
� Gcc

2
g2xy

#
dy dx �13�

and ®nally, the work done by the load is Pe. Therefore the total potential energy, V, is:

V � Ub �Um �Uc ÿ Pe �14�
Applying linear eigenvalue analysis to the respective functionals for the overall and local buckling cases
yields the respective critical loads for P:

Table 1

Strains (axial: e, shear: g), curvature (X) and end-shortening (e) expressions for linear energy formu-

lation

Overall mode Local mode

ex ÿyy 0 ÿ �1=2L� � L0 W 0 2 dxÿ D ÿyy 0N ÿ �1=2L�
� L
0 ��@=@x��WN � �2y=b�WH��2 dxÿ D

ey 0 �2=ib�WH

gxy W 0 ÿ y W 0
N ÿ yN � �2y=b�W 0

H

X2 W 00 2 W 00 2
N � W 00

H
2

e D D
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PC
o �

2p2EI
L2
� 2Gb2p2

L2

26664
�
D� Cx

6

�
2G� b2p2

L2

�
D� Cx

6

�
37775, �15�

PC
1 � K

2642p2EIi2

L2
� kL2

p2i2
� 4G

3
ÿ 2G 2

p2i2b2

L2

�
D� Cx

6

�
� 2G

375, �16�

where PC
o and PC

1 are the overall and local buckling loads respectively, and:

EI � Ect3

12�1ÿ v2 � , K � 6Et
ÿ
1ÿ vxvy

�� 3Ecb

6Et
ÿ
1ÿ vxvy

�� 2Ecb
, D � Etc

2
, G � Gccb

2
�17�

k � Eyc

2
ÿ
1ÿ vxvy

�
b
, Cx � Exbc

2
ÿ
1ÿ vxvy

� : �18�

3.2. Post-buckling and imperfections

The linear critical buckling analysis gives no indication of the true behaviour of the panel after
buckling. A periodic Rayleigh±Ritz energy model taking the concept of the snake and hourglass modes
a stage further, including the von KaÂ rmaÂ n large displacement expressions (Hunt et al., 1988), highlights
the potential unstable nature of the post-buckling response (Fig. 5). As the overall modal amplitude
grows, the neutral post-buckling path of an initial overall buckle is destabilized at a secondary
bifurcation point, triggering an interactive local mode with a certain combination of the snake and
hourglass forms. The e�ect of the secondary bifurcation is to reduce the load capacity of the panel. A
wave number i can be determined for the worst case interactionÐwhere the critical and secondary
bifurcations are closest. Although this periodic post-buckling model highlights potentially destabilizing

Fig. 5. Equilibrium diagram for sandwich panels: (a) fundamental path; (b) critical path of overall buckling; (c) secondary path of

interactive buckling; (d) imperfect path.
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secondary bifurcations, the periodicity is prescribed; what is needed is a post-buckling model with no
such prede®ned buckle patternÐa variational model derived from energy to de®ne the governing
equations of the sandwich panel.

This general localized model (Hunt and Wadee, 1998; Wadee and Hunt, 1998a) develops a system of
nonlinear di�erential equations that account for the interaction between overall and local modes of
buckling of the sandwich panel and lead to a secondary instability on one face of the panel when the
overall mode forces the e�ective load at midspan to exceed the local buckling load. Localized buckling
is triggered as the periodicity of the local buckle gains a long wave modulation from the interaction with
the overall mode. Formulation of the model requires two functions, w(x ) and u(x ), introduced to
describe, respectively, lateral and in-plane de¯ections of the face that localizes (Fig. 6).

The governing equations are developed from the energy functional V after including new terms from
the contributions to the energy of the functions w and u. The detailed derivation of the di�erential
equations from the energy functional via the calculus of variations is found in Wadee and Hunt (1998a)
for the case of an orthotropic core; resulting equations are stated including the imperfection, the
analysis being aided by the symbolic computation package Maple V (Heck, 1996):

EIw 0000 �D

"
2Dw 00 � qt

bp2

L

�
sin

px
L
w 00 � p

L
cos

px
L
w 0
�

ÿ
ÿ
2u 00w 0 � 2u 0w 00 � 3w 02w 00

�#
� G

�
u 0

b
ÿ 2

3
w 00 � �qs ÿ qt �p

2

L
sin

px
L

�

� Cx

"
2

3
Dw 00 ÿ

�
1

2
u 00w 0 � 1

2
u 0w 00 � 3

5
w 02w 00

�
� qt

bp2

6L

�
sin

px
L
w 00 � p

L
cos

px
L
w 0
�#

� Cy

�
2

3
vx
ÿ
ww 00 � w 02

�
ÿ vx

�
u 0 � 1

3
w 02

�
ÿ 2

3
v2xDbw

00
�
� kw � EIw 00000 ,

�19�

�
D� Cx

3

�
u 00 ÿ G

2b

�
2

b
uÿ w 0

�
�
�
D� Cx

4

�
w 0w 00 ÿ Cyvx

2
w 0 ÿ Gp

b
cos

px
L

�
�qs ÿ qt � ÿ qt

s

�
� 0: �20�

Eqns (19) and (20) respectively describe the lateral and in-plane de¯ection of the face plate under greater
compression. The imperfection w0 is introduced only to one face and in the same way as for the struts
of the previous section. With w0 present, the equilibrium path is smoothed with bifurcations being
rounded o� (Fig. 5(d)), with the maximum load, the limit load P I, always less than the critical load
from linear analysis PC.

The di�erential equations are also subject to the following integral constraints, determined by
minimizing V with respect to the generalized coordinates qs, qt and D (Hunt and Wadee, 1998):

Fig. 6. Displacement functions used to describe interactive buckling.
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P � 2p2EI
L2
� 2G

qs

"
�qs ÿ qt � � 1

pL

�L
0

cos
px
L

�
w 0 ÿ 2

b
u

�
dx

#
, �21�

s�qs ÿ qt � � qt �
�L
0

"
s

pL
cos

px
L

�
2

b
uÿ w 0

�
ÿ 1

bp2
sin

px
L

�
u 0 � 1

2
w 02

�#
dx, �22�

D �
P�

�L
0

"
2D

L

�
u 0 � 1

2
w 02

�
�
�
Cx ÿ Cybv

2
x

L

��
u 0 � 1

3
w 02

�#
dx

4D� 2Cx ÿ 2Cyv2xb
, �23�

where additional quantities are de®ned:

Cy � kb

2
, s � 2GL2

b2p2

�
D� Cx

6

�ÿ1
: �24�

The panel is assumed to be simply-supported, eqn (25), and matching the applied stress at the ends gives
the in-plane boundary conditions, eqn (26):

w�0� � w 00�0� � w�L� � w 00�L� � 0, �25�

ÿ P

4D
�
�
1� Cx

3D

�
u 0�x0� �

�
1� Cx

4D

�
1

2
w 02�x0� ÿ

�
1� Cx

2D
ÿ Cyv

2
xb

2D

�
D: �26�

4. Numerical results

Each system formulated above has been studied extensively and results are presented below. For the
®rst two, periodic imperfections are compared with worst case localized imperfections. The worst case is
de®ned as the imperfection that minimizes the limit load for a given imperfect end-shortening e0; chosen
as a more reasonable basis for comparison than used by Amazigo et al. (1970). Then the location of the
maximum for the localized imperfection is varied such that it no longer occurs at midspan; the e�ects of
varying c are quanti®ed by how it changes the limit load.

For the third system, the compression sandwich panel, a linear optimization scheme is implemented.
The resulting optimum panel is examined in the post-buckling range in both perfect and imperfect
forms. Brief discussion on the use of optimization in systems which encounter subcritical bifurcations
follows. These studies require the use of numerical parameter continuation techniques. A suitable
package AUTO (Doedel et al., 1995) was implemented, using it as a boundary value problem solver in
conjunction with its powerful capabilities for continuation and bifurcation problems in ordinary
di�erential equations.

4.1. Periodic versus localized imperfection

4.1.1. Constant load strut
The di�erential equation for the strut on a softening quadratic foundation is in a nondimensional

form
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w 0000 � pw 00 � wÿ w2 � w 00000 , �27�
where p � P=

��������
kEI
p

from the original formulation and pC � 2. Fig. 7(a) compares a periodic
imperfection with a localized one (Fig. 1b). The periodic imperfection is examined in two stages. In the
®rst, A0 is varied while b is kept at the linear eigenvalue solutionÐL � 13p implies b � 13. In the
second stage, A0 and b are both varied such that e0 is kept constant where

e0 �
�L
0

1

2
w 020 dx: �28�

Although e0 has a physical interpretation of strut end-shortening, it can also be thought as a mean
square measure of the total initial imperfection. Similarly, the localized imperfection is examined in two
stages. In the ®rst, A0 and a are changed while b is kept at the linear eigenvalue solution. Once a worst
case combination of A0 and a have been de®ned, the second stage holds e0 and a constant, while A0 and
b are adjusted to minimize the limit load. It is found that the limit load from the periodic imperfection
can be signi®cantly reduced by adjusting b slightly away from the eigenvalue solution, but in the
localized case adjusting b does not make any signi®cant change to the limit load.

A noteworthy feature is the transition of the type of worst case imperfection from periodic
�0Ee0=LI0:35� 10ÿ3� to localized. This is hypothesized to be connected with the length dependence of
the perfect strutÐthe secondary bifurcation triggering localization not coinciding with the critical
bifurcation in ®nite length struts (Hunt et al., 1989). Furthering this investigation lead to Figs. 7(b) and
8 where the transition occurs earlier for a longer strut, and the locus of transition points is shown for a
spread of lengths respectively; the hypothesis seems to be con®rmed:

L 41 �) eS 4 ec,
ÿ
P I=PC

�
trans 4 1, �e0 �trans

4 0: �29�

4.1.2. Body force strut
Similarly for the body force strut in a nondimensional form,

w 0000 � pw 00 � q

�
sin

px
L
w 00 � p

L
cos

px
L
w 0
�
� wÿ w2 � w 00000 , �30�

where q � Q=
��������
kEI
p

, for di�erent values of q, imperfections are compared against each other with the

Fig. 7. Imperfection-sensitivity diagram for strut showing limit loads for (i) periodic imperfection (ii) most severe localized imper-

fection; where: (w)Ðconstant b from linear eigenvalue analysis, (X)Ðvariable b to minimize P I.
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same procedure as for the constant load strut. Like the localized imperfections in the constant load case,
the di�erence in the limit loads when b is constant and when b is varied is hardly distinguishable, but
this time for both periodic and localized imperfections.

Fig. 9. Imperfection sensitivity diagrams for body force strut with varying q.

Fig. 8. Locus of points showing the transition where the worst case imperfection changes from periodic to localized: (a) limit loads

against strut length; (b) initial imperfection end-shortening against strut length.
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Fig. 9 shows imperfection sensitivity curves for the cases of q � 0:1 pC, q � 0:2 pC, q � 0:5 pC and
q � pC, where pC � 2. These curves show that, unlike the constant load case, the localized imperfection
is always the worst case for q > 0. Fig. 10 shows the variation of the worst case A0 and a as e0
increases. This shows that the initial values of a are quite di�erent. However, as e0 increases, the worst
case combinations of A0 and a for the separate cases seem to converge on to one path.

4.2. Location of maximum imperfection

In the previous section the location of the maximum imperfection is set at midspan. In the following,
c is varied to see how this a�ects limit load, P I. Fig. 11 shows exactly how the imperfection is changed
along the length.

Fig. 12(a) shows the limit load variation as the imperfection is shifted along the length for the
constant load strut. It shows that only when the boundary a�ects the shape of the imperfectionÐby
causing A0 to increase, as e0 remains constantÐthe limit load changes. Therefore, for long struts, where

Fig. 10. Variation of worst case combinations of A0 and a for the body force strut imperfection with di�erent q values.

Fig. 11. Examples of c variation in W0,A0 � 1:622� 10ÿ1, a � 21:033: (a) c � 0:5L; (b) c � 0:25L.
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boundaries are less important, the limit load is invariant with respect to the location of the maximum of
w0.

Fig. 12(b) shows similar plots as Fig. 12(a) for the body force strut. It shows that the minimum limit
load occurs when the maximum of the imperfection is at midspan. The bowl shape of this curve deepens
as q increases. Therefore for the sandwich panel, which has been shown to share the variable stress
property along the panel length of the body force model (Hunt and Wadee, 1998), we need only
consider symmetric imperfections about midspan: c � L=2.

4.3. Sandwich panel

A simple optimization routine is invoked in which the objective is to maximize the linear critical load
PC while keeping the core volume constant. As a result, the two distinct modes of buckling, overall and
local, are brought together to be triggered at the same load. The design optimum and two neighbouring
case are then examined in the nonlinear post-buckling range for both the perfect and imperfect cases.
The results presented are an extension of a recent paper by Wadee and Hunt (1998b).

4.3.1. Optimization of panel geometry
A practical sandwich panel is considered with the following properties as explained in Fig. 3. For the

face plates: E = 68,947.57 N mmÿ2 and v = 0.3, with t = 0.508 mm and L = 508 mm. For the core:
Ex � Ey � 25:0 N mmÿ2, Gc � 10:9 N mmÿ2 and vx � vy � 0:2. The core is assumed to be linearly
elastic. The important constraint in the optimization is that the cross-sectional area of core material (bc )

Fig. 12. Examples of c variations for the heuristic struts.
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is constantÐhere bc = 6000 mm2. Fig. 13 shows the variation of the critical loads as b changes. A
design optimum is achieved when the maximum buckling load is foundÐwhere the curves cross.

However, such optimization schemes are known to promote nonlinear interactive post-buckling e�ects
(Thompson and Lewis, 1972; Thompson and Supple, 1973). This is quanti®ed by examining perfect
post-buckling equilibrium paths and determining imperfection-sensitivity characteristics for the optimal
case and its neighbourhood.

4.3.2. Perfect post-buckling behaviour
In this section, three separate con®gurations of the sandwich panel are studied. These cases cover

con®gurations for which the overall mode is critical (b = 50 mm), where the modes coincide (b = 60
mm), and where the local mode is critical (b = 74 mm). The neighbouring cases to the optimum have
identical critical loads. The position of the secondary bifurcation is tabulated in Table 2: this compares
the periodic post-buckling model with the current localized model. It turns out that the localized model
virtually has a coincident secondary bifurcation with the critical bifurcation (eS=eC � 1) whereas the
periodic cases require a large increase in total deformation before any interactive buckling takes place.
The post-buckling response predicted from the localized model for each case is shown in Fig. 14.

The plots in Fig. 14 show that the behaviour of each case is similarÐall exhibiting highly unstable
snapback behaviour, thereby being initially unstable in both dead and rigid loading. The proximity of eC

and eS, however, is dependent on the sandwich panel geometry. Where the overall mode governs the
behaviour, there is a small gap between initial overall buckling and interactively induced localized

Fig. 13. Critical load variations as sandwich panel width b varies.

Table 2

Comparison of relative deformation at secondary bifur-

cation position for periodic and localized post-buckling

models

b Periodic eS=eC Localized eS=eC

50 2.27 1.0143

60 4.59 1.0008

74 10.25 1.0000

M. Ahmer Wadee / International Journal of Solids and Structures 37 (2000) 1191±12091204



buckling, giving some warning of impending collapse. However, where the local mode governs, only a
tiny overall perturbation is required to induce localization; giving negligible warning of impending
collapse under dead or rigid loading conditions.

Another important variation is P against qt (Fig. 14) because this is a guide to the respective
coe�cients p and q of the body force strut. Unlike the cases considered for the body force, the value of
qt varies with P, and qt is very small when P is near critical. Thus, it is to be expected that the graphs of
the worst case combination of a and A0 intersect the origin unlike the curves shown in Fig. 10 for the
di�erent q values.

4.3.3. Imperfection-sensitivity
In this imperfection sensitivity study of the sandwich panel, as with the body force strut, varying b

away from the linear eigenvalue solution has negligible e�ect on the limit load. However, the study of

Fig. 14. Equilibrium paths and relative modal amplitudes for sandwich con®gurations: (a) overall mode critical: PC
min � PC

o ; (b) op-

timum case: PC
min � PC

o � PC
1 ; (c) local mode critical: PC

min � PC
1 � 0:922PC

o .
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Fig. 15. Imperfection sensitivity diagrams for optimal case b = 60 mm: (a) limit load P I=PC against imperfection end-shortening

e0=L; (b) amplitude of w0 against e0=L; (c) degree of localization a against e0=L; (d) a against A0=t.

Fig. 16. Imperfection sensitivity diagrams for neighbouring case (overall mode critical) b = 50 mm: (a) limit load P I=PC against

imperfection end-shortening e0=L; (b) amplitude of w0, A0=t, against e0=L; (c) degree of localization a against e0=L; (d) a against

A0=t.
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periodic imperfections is presented because of the fact that this type of imperfections may occur quite
naturally from, for instance, the material manufacturing processes or in the sandwich panel construction
itself (Karlsson and AÊ stroÈ m, 1997). The initial imperfection w0 represents displacement of one face of
the panel. Investigations of the imperfection for both periodic and localized cases are performed with
the same procedure as outlined for the constant load strut, except that the value of b is ®xed at its linear
eigenvalue solution.

Figs. 15±17 show the comparison of the imperfection-sensitivities from periodic and localized
imperfections for the optimal and the neighbouring cases respectively. These plots show that for the
same value of e0, the localized imperfection has a considerably more severe impact on the limit load
than the corresponding periodic one. Also a increases monotonically with A0 for the worst case localized
imperfection. However, the sensitivities of the neighbouring cases are not quite as severe as the
optimum.

The results are similar in form to the behaviour exhibited by the body force strut. The periodic
imperfection is never found to be as severe as the corresponding localized case except at the secondary
bifurcation. Nevertheless, it is shown that any form of imperfection on one face of a sandwich panel
denies it the ability to carry its linear eigenvalue critical load; this is most severe for the optimized panel
considered.

5. Concluding remarks

This study has highlighted the importance of localization in the behaviour of imperfect subcritical
structural systems. In contrast to earlier work by Amazigo and his co-workers (1970; 1971) on similar
systems, localized imperfections are identi®ed as the most severe for the majority of load cases. For the
strut on a softening foundation with a constant axial load, a transition point is identi®ed; this pinpoints

Fig. 17. Imperfection sensitivity diagrams for neighbouring case (local mode critical) b = 74 mm: (a) limit load P I=PC against

imperfection end-shortening e0=L; (b) amplitude of w0 against e0=L; (c) degree of localization a against e0=L; (d) a against A0=t.
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the transition of the worst case imperfection from being periodic to localized. Because of its similar
length dependence, the transition point seems to be related to the secondary bifurcation of the perfect
case, which transforms initially periodic to localized buckling. For a similar strut but with a non-
constant axial load maximized at midspan, the worst case is a localized imperfection with maximum at
midspanÐthe body force strut and the axially-loaded sandwich panel occupy this category.

In the case study of a practical sandwich panel, optimized via coincidence of distinct linear modes, a
heightened imperfection-sensitivity is observed in the optimal case. Initial small local deformation is
shown to have a signi®cant reduction in the real (imperfect) axial load capacity. This should sound a
note of caution for designers; the optimized panel and the neighbouring cases all show unstable snap-
back behaviour not predicted by earlier periodic Rayleigh±Ritz approximations of post-buckling. Thus,
not only does the localization phenomenon drive post-buckling to be much less stable in an optimal
case, but it also severely exaggerates the imperfection-sensitivity characteristic.
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